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OPTICAL TRANSPARENT NETWORKS

Optical
transponders:
Tx/Rx a LP at A in B,
operating at R, over
WDM grid using DP
coherent optical
technologies

ROADMs:
Transparently routes
any A in B, from any
input direction to any

output direction
according to the

WDM grid

Optical amplifiers:
Transparently amplify
all & in By

Optical fibers:
Transparently
transport all & in B,




AGGREGATED AND DISAGGREGATED NETWORKS

! FSP Network !
| t AP Hypervisor |

| End to End System i

[ |
%ﬁ—rm_r-_ - -_. -E'
==

Transponder Terminal ROADM Terminal Tranzponder
Fully aggregated: Entire transport network acts as a SIF‘IQ|E managed system

Aggregated

| 1 ar | tAP|| tAP|| tttnlpl tAP|| 1 ar |

Degrees

Fully disaggregated: E\.reryrthlng Is a Separate netw-:trl-c element

i Y | 1 ar | 1 an |
N Open fine systern |

Partly disaggregated: Transponder is one element, open line system (OLS) 1s second
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PARTIALLY DISAGGREGATED NETWORKS

@ r > > AEP > > > (ED |
" l , ) W

’ Optical Line System - Vendor A I Optical Line System - Vendor B ‘

> Disaggregated ROADM <

> Open Transponders <

E. Riccardi et al, An operator view on the introduction of white boxes into optical networks, JLT, 2018
J. Kundrat et al, Opening up ROADMs: let us build a disaggregated open optical line system, JLT ,2019

C. Xie et al, Open and disaggregated optical transport networks for data center interconnects, JOCN, 2020 ‘g?‘%‘\g
M. Birk et al, The OpenROADM initiative, JOCN, 2020 G P«‘,"Z%
H. Nishizawa et al, Open whitebox architecture for smart integration of optical networking and data center technology, JOCN, 2021 20 NE T
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LIGTHPATH = AWGN NONLINEAR CHANNEL

« Each LP is a transparent point-
to-point digital connection
deploying DP coherent optical
technologies

 The model for each transparent

channel is AWGN nonlinear

channel affected by

* Gaussian ASE noise from
amplifiers

* Gaussian NLI from nonlinear
crosstalk in fiber propagation

Overall ASE NLI

filtering 5 -9 * Filtering penalties
GSNR = ——¢
I:)ASE T I:)NLI % NET
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TRX MODEL

« TRX are typically flexible supporting multiple modulation formats
« The exploited FEC technology defines the maximum tolerable BER=BER,,.,
 From b2b characterization we obtain a full model for transceiver

Pre-FEC b2b characterization TRX model

BER . :
Available modulation

formats at increasing rate

BER,ax

VAN
o

‘¢/\/ \ BZB OSNR REQUIRED
[dB] = LP GSNR

\,% n\ B]
G. Borraccini et al, Using QoT-E for open line controlling and modulation format deployment: an experimental proof of concept, ECOC, 2020 (‘32 2 NET
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DIGITAL TWIN OF THE OPTICAL TRANSPORT

1
GSNR( 4, ) =10log,, 7 7 7 -

+ +
GSNR,, GSNR,. GSNR,,

_(FPH,0|B +FP. 4 +j [dB]
FPB,dB + |:F)V,dB

AT(Ayr )= Aty + ATy + ATy, [MS]

S
DaCC (AUT ) - Dacc,CH + Dacc,BC + Dacc,BD |:p_:|

V. Curri, Software-defined WDM optical transport in disaggregated open optical networks, ICTON, 2020
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SOFTWARE DEFINED OPTICAL NETWORKING

HIERARCHICAL CONTROLLER GNPy

OPTICAL CONTROLLER

Optical circuits controller Optical power controllers
Distributed

Local on each OLS
ROADM-ROADM vision
Define the optimal power
spectral density at fibers
input

« Set amplifiers

« Centralized

« Global vision

« Find a transparent source-to
destination lightpath

« Set swithching matrices

« Evaluate the LP QoT

« Setthe modulation format
in TRX

N
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USING MACHINE LEARNING IN
THE DIGITAL TWIN




THE MSFT EST-BED = 6 ROADMS

B2 == o = Mixed fiber OLS 400 km up to 2000 km

EDFA B Fiber

fakm
LEAF

@ o () s = Multivendor/multirate/multiformat

ROADM node
75km
SSMF

transceivers on full C-band

el
o LR o s = 500+ tested cases
Tokm B5km 90krm B5km
LEAF LEAF LEAF LEAF
T0km
LEAF
| —ASE —Vendor A —Vendor B —Vendor C |
i3 i3

TSk
LEAF
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"
=
n
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=
=
a.u

a5km T0km Tkm
S5MF SSMF LEAF

;2 1;3 1;4 1;5 1;5

Frequency (THz)

191 1

Microsoft SDN
Controller Estimated Measured

Network GSNR GSNR
Datasheets

Description
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GNPy QoT-E ACCURACY
Error = Measured GSNR - GNPy GSNR

Error Distribution - Reach 190 Overall: 500+ cases

11 [ 100
0.5+
80
ol + . %
0.5 60
a ' : 40
5

km B800km 1200km 1600km 2000km 4000km

Error (dB)

Counts

20
Reach (km)
0
Error distribution - Modulation Format -1.25 1 -075 05 -025 0 025 05 075 1 125 15
1.5 ) Error (dB)
A
g " + L] * Inaccuracy mainly due to lack of exact
£ s knowledge of models for network
T R elements: Machine learning may help
h PM-QPSK  PM-8QAM  PM-16QAM ° Need for dataset| &
Modulation Format ) "%2\‘(:)‘
G
02 NET
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DIRECT AND INVERSE ML MODEL

System under
test

* Direct ML model: the ML agent is trained in order to predict
the I/0 behavior given the ctrl

* Inverse ML model: the ML agent is trained to predict the
needed ctrl to obtain a wanted I/0 behavior

%HOK

GA R
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SELF- AND TRANSFER-LEARNING

* The ML agent is trained on the system under test
and it is used on that specific systems

* The ML agent is trained on a system, then itis
applied to a “sister system”

* As “sister system” we consider a system we suppose
is sharing with the training system most of the
fundamental mechanism defining system
performance

* In optical networking, a sister system can be a
network using the same HW on a different
geographical topology

=~ NET
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MACHINE-LEARNING BASED HW MODEL

A ML model can replace a mathematical model of network
elements

 Both inverse and direct ML models are useful to define the

needed control (inverse) or the GSNR impairment (direct)
of a component

* |t can be useful for all NE for which a dataset can be easily
obtained before installing the HW as for instance EDFA,

switches

* |t is more difficult to be applied when we need a dataset
from the field

= NET
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MACHINE LEARNING ASSISTED L-PCE

SDN
controller

Both self-
and cross-
training
options for
training
dataset

Network

’l
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USING ML TO PREDICT THE OSNR
COMPONENT OF THE GSNR:
EXPERIMENTAL PoC




ENHANCING GNPy WITH MACHINE LEARNING

ML agent trained by ASE shaped noise do predict the OSNR

Optical Network Controller Lightpath QoT Computation |

LP,

—————— OLS; ; setting

LP,

source

¥

Network ML
Status agent

. Y LPs“
| "”:’Y destination GSN de
N A : GSNR_,=1/ISNR

A. D’Amico et al, Enhancing Lightpath QoT Computation With Machine Learning in Partially Disaggregated Optical
Networks, IEEE OJCS, 2021 ‘5’5 1 NET
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APPLICATION SCENARIO

* Reliable QoT computation with different spectral load

 Optical amplifiers may strongly vary their performance with the
spectral load given the control

* We suppose that amplifier are not reachable individually

* We suppose to be able to collect a data set with different input
spectral loads obtained by ASE shaping

* We suppose to rely on optical channel monitors at the input and
output OLS ROADMs

» We target to train a ML agent that replaces the evaluation of the
OSNR component of QoT by GNPy

53 gy
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EXPERIMENTAL SET-UP AND DATASET

EXPERIMENTAL SETUP DATASET

ASE g Wave Shaper

OSA measured power [dBm]

-20 u ¢ °° TS ) L ¢ $b o ‘/
=25
e Signal
-30 ® ASE
191 192 193 194 195
frequency [THz]
. 8span line - Waweshaper to generate different
- Commercial amplifiers set to the optimal working spectral loads (96 ch in the C-band)
point according to nominal values « 2520 spectral load configurations
« Waveshaper micking ROADM in generating shaped « For each we collect
noise * the amount ASE noise for the OFF
OSA at the receiver mimicking the OCM channels =
Two pluggable DCO to test the effectiveness on the method * the overall gain for ON chann
200 g
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PERFOMANCE OF TRAINED MACHINE LEARNING AGENT

FOR OSNR PREDICTION
PREDICTIONS USING

PREDICTIONS BY NOMINAL G AND NF FOR
THE ML AGENT EDFA MODEL

Signal level error 2o

[dB] I

Z.-0.4
~

o

© 0.4

5

»n 0.8
1.2
1.6

2.0

Noise level error °
[dB]

—-0.8
£

g 0.4

S 0.0 =

5 0.k
o 0.4
)]

< 0.8

1.2

191.3 192.2 192.9 193.7 194.4 195.2 1913 192.2 192.9 193.7 194.4 195.2 S A
frequency [THz] frequency [THz] GA
0
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GSNR COMPUTATION: GNPy + ML AGENT

cuT 7
0.4

* The ML agent to predict the OSNR is | Measurement

Prediction

used within GNPy to predict the overaII
GSNR

* Prediction results are compared to 0.1 I“IIIII
measurements obtained by testing 0.0

two modulated channels on two @ ot 73 ”
channels: 7t and 73rd

* GSNR is obtained from pre FEC BER >
measurement converted to GSNR by &

b2b characterization 0 |II|I‘ I
- Large set of spectral load is tested 00 I Illl I"

(b) GSNR [dB]

Densty
o
N

0.6 Measurement
Prediction




NON DATA-DRIVEN COGNITIVE AND
AUTONOMOUS OPTICAL POWER
CONTROLLER




OPTICAL POWER CONTROLLER

/" opricaL NerworK conTRoLLER / OPTICAL NETWORK CONTROLLER )
PARTIALLY ! R & s
DISAGGREGATED : Voo v OPTICAL POWER CONTROLLER
OPTICAL i o | i i { i
I o
NETWORK : Q é ( { { e
\é / ............ \ a ' ' ' ' /

« The OPC sets the working point (e.g, gain and tilt) of OAs in the OLS

* In partially disaggregated network, independent OOPC for each
ROADM-to-ROADM OLS

* The purpose is to minimize the propagation impairment on any LP
propagating on the OLS

« The OPC is typically static and traffic agnostic gg‘g“
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OPC BASED ON GNPy

: OPTICAL NETWORK CONTROLLER ) ° Feeding GNPy with OA models and
H PTICAL POMER FONTROLLER H possible data from monitors

J @< g J  Possible training or probing phase
PP PP D g or probing p

* GNPy computes the GSNR for every

" f optimaloa  frequency varying the OA setting
*UIN8S « An optimizer engine drives the

« Line mode
« OA model
« Datafrom

A process to the optimal setting given
GNPy the target
* Typical targets
optimizer « Maximizing GSNR: Max{<GSNR(f)>}
\_ U y * Flattening GSNR: Min{<|GSNR(f)—<GSI:IR>|>2}
(e NET
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QoT-E FOR OPC: INPUT DATA

GNPy 1
GSNR(f)=—— :
INPUT - OSNR(T) " SNRy, (1)
* SNR, ()
* OSNR(f)«- OA model » Need accurate line
description
« Gain(f) and NF(f) for every - Fiber type (a(f). D(f) A and
power level and gain and tilt length
setting  Connector losses
 OA model
« from accurate characterization * IMPOSSIBLE TO GET A
(look-up table DATASET FOR DATA DRIVEN
« from trained ML agent QEESSA[‘)%ISPOEYC&)USE IT
CHANNELS i
2025 NET
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AUTONOMOUS LINE CHARACTERIZATION

JOURNAL OF . J LY
Optical Communications
and Networking e

Cognitive and autonomous QoT-driven optical line

controller | * Suppose to rely on OCM and

o e o s OTDR
OPTICAL LINE SYSTEM * Need for a single probing
— ) action
.?‘p il ",

* Evolutionary algorithm to
NODE classify each fiber span to
T apeuenuo, obtain a(f), D(f) Ay Lspan

 EE—— * NOTE: probing can be done

NODE

(i) p

;ocm A ' A —l after every fiber cut
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EXPERIMENTAL PoC

= Amplifiers > commercial EDFAs
= Lab characterized

= Fibers > 8 spans of roughly 80 km

= Physical characteristics:
= Attenuation profile
= Chromatic dispersion
= Kerr effect
= Stimulated Raman scattering

ASE g Wave Shaper

Power [dBm]
IS & %

= |nput WDM Spectrum - 80 ASE-

shaped c/zanhe/sth rough a AUTONOMOUS CHARACTERIZATION RESULTS
commercial wave shaper filter
(1 OOOS, F| Si na r) Span Lg [km] Cg [(W -+ km)™] D [ps/(nm-km)] a( forpr) [dB/km] l(z=0) [dB] l(z= Lg) [dB]
#1 80.4 0.42 16.7 0.191 0.9 0.1
» Modulated channels > Tooom . e . )
generated by flexible CFP2-DCO “ 799 073 44 0.196 0. 56
coherent modules from " o 073 hy 0210 ' o
Lumentum p|ugged in the #7 64.7 0.44 16.7 0.189 0.2 3.0
o #8 78.6 0.54 3.8 0.187 0.3 0.1

Edgecore Cassini AS7716-24SC
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EXPERIMENTAL PoC: RESULTS

« Using autonomous line characterization Gain and tilt of each amplifier are jointly optimized
« Results are tested using modulated channels generated by pluggable DCO tuned on 9

different wavelength in the C-band
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CONCLUSION

» Coherent optical technologies enable Software-Defined
Optical Networking

» Abstraction and virtualization of WDM optical transport is
based on accurate QoT-E

 Lacking knowledge of exact models for physical layer: mainly,
amplifiers and fiber span

 If dataset are available or can be obtained, ML mdels of NE or
subsystem is extremely effective

* If dataset are difficult to get or scenario varies with time,
autonomous technics are needed and proven effective

53 gy
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