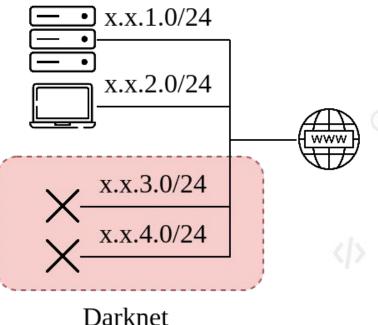
DarkVec: Automatic Analysis of Darknet Traffic with Word Embeddings

Luca Gioacchini, Luca Vassio, Idilio Drago*, Marco Mellia SmartData@PoliTO, Politecnico di Torino, *Università di Torino

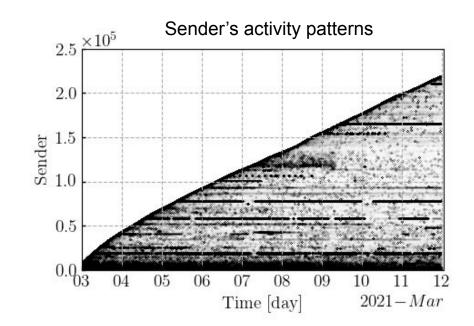
Zied Huidi, Dario Rossi Huawei Datacom FRC lab, Paris (FR)



Darknets

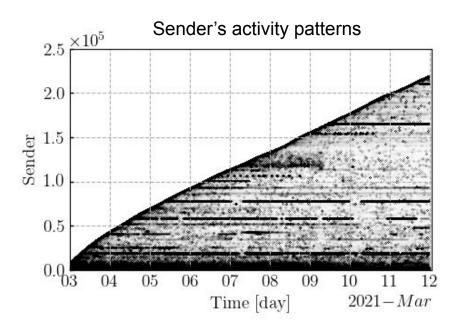
 Darknets are sets of passive IP addresses not hosting any services

- Darknets receive only unsolicited traffic by definition:
 - Privileged point of view for cybersecurity applications
 - But observe a very noisy picture


 Coordinated senders targeting darknets may be a threat (e.g. botnets running distributed attacks), or not (project scanning the internet IP address space, backscattering, ...)

Problem Definition

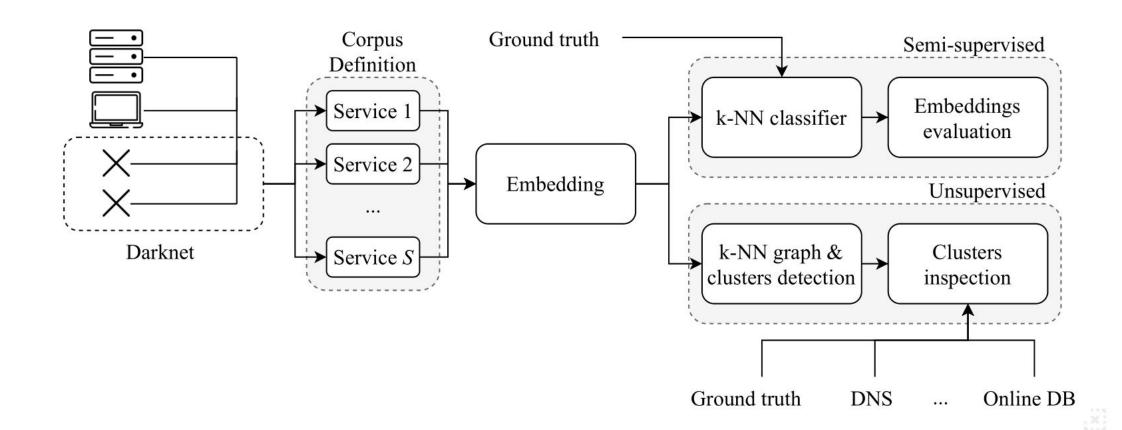
 10⁵ senders target a /24 darknet in one month making manual analysis infeasible


Need of automate the analysis process

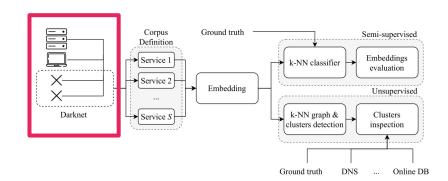
 DarkVec: Methodology to automatically identify clusters of senders engaged in similar activities on darknets relying on word embeddings

Problem Definition

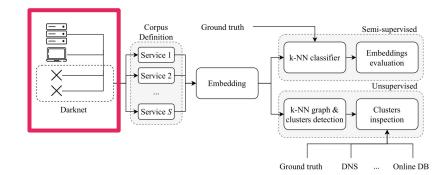
 How can we highlight similar behaviors among senders?



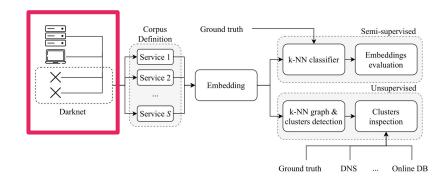
 Main assumption: senders engaged in similar behaviors are expected to exhibit similar temporal and spatial patterns in reaching darknets


RQ: Is it possible exploiting temporal co-occurrences between senders reaching darknet to highlight similar behaviors?

DarkVec Overview



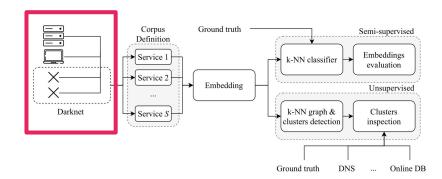
Dataset

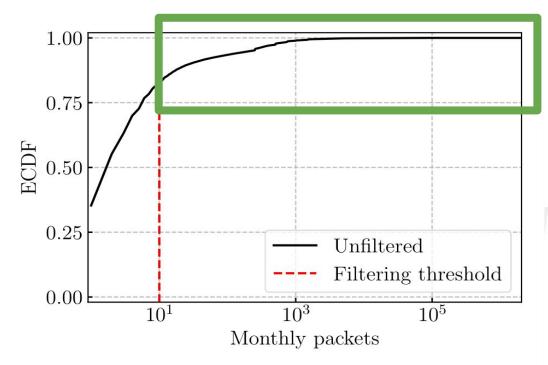

Data Collection


- /24 darknet
- 30 days of traffic for training
 - From 03-2021
 - > 500k senders
 - > 63M packets
- Testing dataset:
 - Last day of the collection 2021-03-01
 - > 43k senders
 - > 3M packets

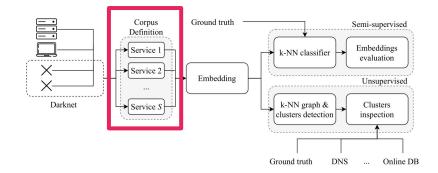
Data Filtering

- /24 darknet
- 30 days of traffic for training
 - From 03-2021
 - > 500k senders
 - >63M packets
- Testing dataset:
 - Last day of the collection 2021-03-01
 - > 43k senders
 - > 3M packets

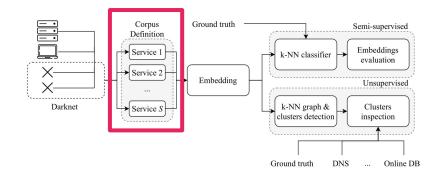


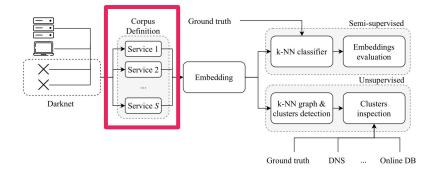


Data Filtering

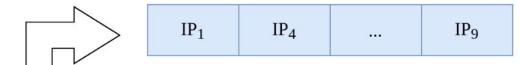

- /24 darknet
- 30 days of traffic for training
 - From 03-2021
 - > 500k senders
 - >63M packets
- Testing dataset:
 - Last day of the collection 2021-03-01
 - > 43k senders
 - > 3M packets

Few senders generate the most of the traffic


Methodology: time-series by services

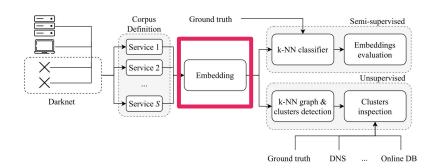

Word2Vec Embeddings: Services

- Service: set of (destination ports, used protocol)
 - Port 22/TCP -> SSH service
 - Port 445/TCP -> NetBIOS service
 - Ports 80/TCP, 8080/TCP -> HTTP service
- Extract time-series
 - Sequence of senders reaching the darknet
 - Targeting a given service


- Three scenarios:
 - Single service (original darknet traces)
 - Auto-defined services (Top-10 destination ports + 1 as 'others')
 - Domain knowledge based (15 known services + 1 as 'others')

Word2Vec Embeddings: Services

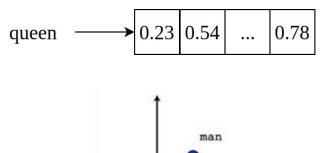
Service₁

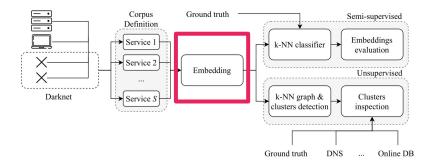

IP_1	IP ₁	IP ₂	IP ₃	IP ₄		IP ₈	IP ₉	
22/TCP	445/TCP	445/TCP	445/TCP	22/TCP	•••	445/TCP	22/TCP	

ΔΤ Γ

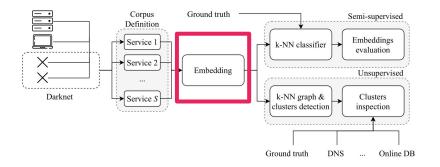
 IP_1 IP_2 IP_3 ... IP_8

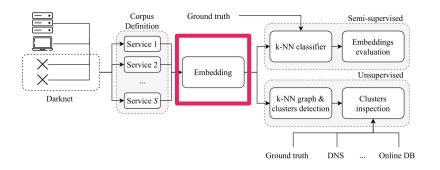

Methodology: Embeddings

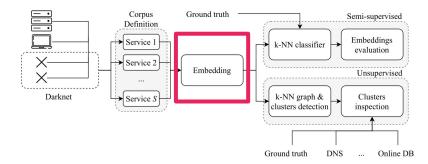


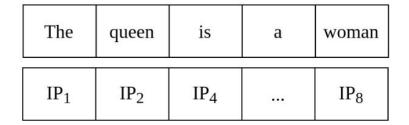

Word2Vec Embeddings

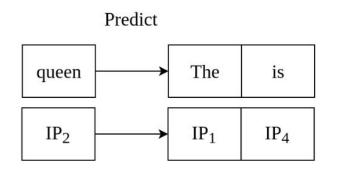
- Natural Language Processing technique applied to text documents
- Artificial Neural Network trained to predict a word in a sentence
- Word embedding: Latent space with numerical representation of a word
- Words belonging to similar context appear close in the embedding

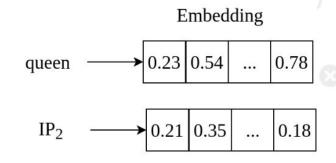

The **queen** is a woman → The queen is a woman


NLP Applications	DarkVec
Word	Sender

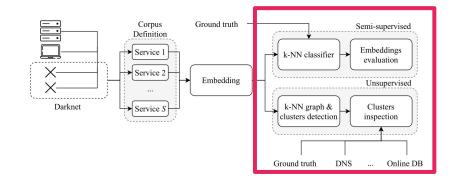

NLP Applications	DarkVec
Word	Sender
Semantic context provided by text	Co-occurrence in time and services


NLP Applications	DarkVec
Word	Sender
Semantic context provided by text	Co-occurrence in time and services
Sentence: sequence of words	Sentence: sequence of senders within a time interval

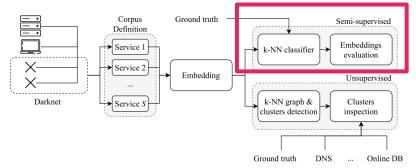




NLP


DarkVec

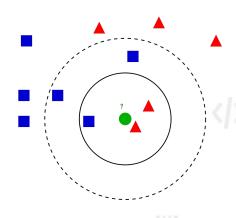
Experiments

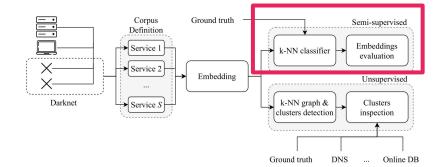

Ground Truth

- Groups of senders whose coordination is known a-priori
 - Fingerprint of the well known Mirai-like malwares
 - Reverse DNS Lookup
 - Publicly available IP addresses of security search engines and research projects (e.g. Shodan.io)

Label	Source	Senders	Packets	Ports	Top-5 Ports Traffic [%]
GT1	Mirai-like [25]	7 351	88 192	75	97.34
GT2	Censys [4]	336	233 004	11 118	7.5
GT3 Stretchoid [15]		104	57 144	91	14.2
GT4	Internet Census [8]	103	9 396	231	37.3
GT5	BinaryEdge [3]	101	7 646	21	38.7
GT6	Sharashka [12]	50	5 436	485	2.28
GT7	Ipip [2]	49	17 342	41	58.9
GT8	Shodan [13]	23	13 566	349	4.1
GT9	Engin-Umich [9]	10	506	1	100
Unknown	-	14 272	2 971 687	10 520	23.7
Total		22 399	3 403 959	19 882	22.8

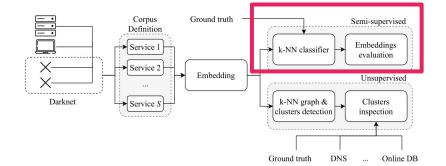
Identified GT classes active in the last day of our collection




 Question: given a partial GT, can we build a classifier to extend our knowledge and label more senders?

Classic classification problem

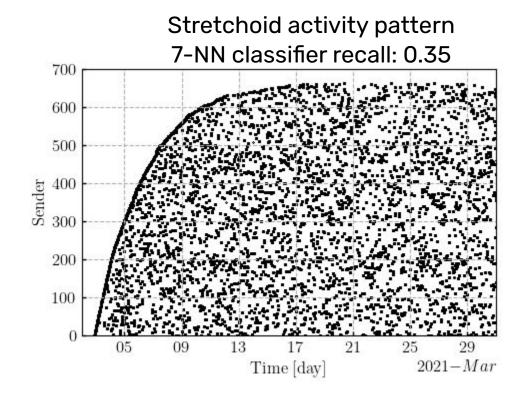
- Idea: use a simple k-nn classifier to label unlabelled senders in the latent space
 - Leave-One-Out validation


k-NN classifier report

	Single ser	rvice ($c=75, V=50$)
	Precision	Recall
Mirai-like	0.98	0.86
Censys	0.63	0.91
Stretchoid	0.03	0.01
Internet-census	0.41	0.50
Binaryedge	0.44	0.74
Sharashka	0.12	0.02
Ipip	0.42	0.92
Shodan	0.00	0.00
Engin-umich	0.67	1.00
Accuracy		0.84

Single service is biased on larger class

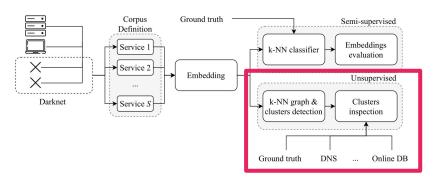
Best scenario: domain knowledge based services 96% of accuracy


k-NN classifier report

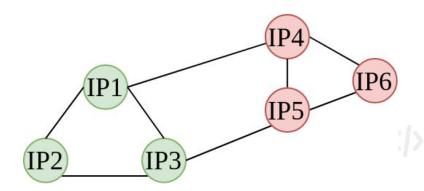
	Single service (c=75, V=50)		Auto-defin	ed services (<i>c</i> =50, <i>V</i> =50)	Domain kn	owledge based (c=25, V=50
	Precision	Recall	Precision	Recall	Precision	Recall
Mirai-like	0.98	0.86	1.00	0.98	1.00	0.97
Censys	0.63	0.91	0.96	1.00	0.91	0.94
Stretchoid	0.03	0.01	0.94	0.30	1.00	0.35
Internet-census	0.41	0.50	0.79	0.86	0.94	1.00
Binaryedge	0.44	0.74	0.98	0.87	0.94	1.00
Sharashka	0.12	0.02	0.92	0.72	0.96	1.00
Ipip	0.42	0.92	0.51	0.86	0.34	0.84
Shodan	0.00	0.00	0.94	0.70	0.93	0.61
Engin-umich	0.67	1.00	0.62	1.00	1.00	1.00
Accuracy	-	0.84	-	0.96	•	0.96

Single service is biased on larger class

Best scenario: domain knowledge based services 96% of accuracy

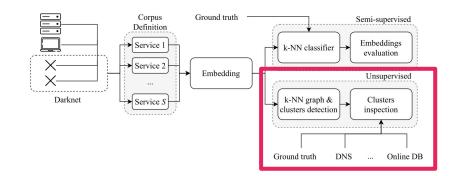


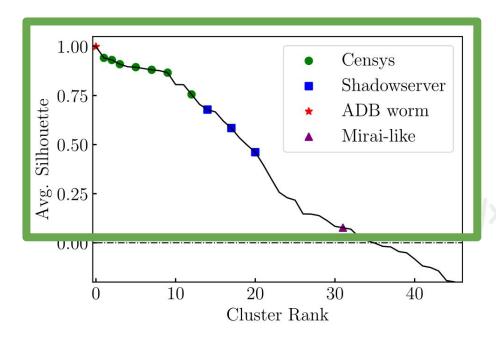
Random patterns are not highlighted by the embeddings
Regular pattern classes are projected into the same portion of the embedding space.


Unsupervised Approach

 Question: without knowing anything about the labels, can we automatically group senders running similar activities on darknets?

Clustering problem


Cluster senders in the latent space (embeddings)



Unsupervised Approach

- 22k senders grouped in 46 clusters
- Clusters quality metric: Silhouette (Sh)
 - For each point it evaluates the within-cluster similarity (cohesion) compared to other clusters (separation)
 - Sh = 1 -> sender is well clustered
 - Sh = -1 -> sender is bad clustered
 - Sh = 0 -> sender is on the border of two clusters

74% of found clusters have Sh>0

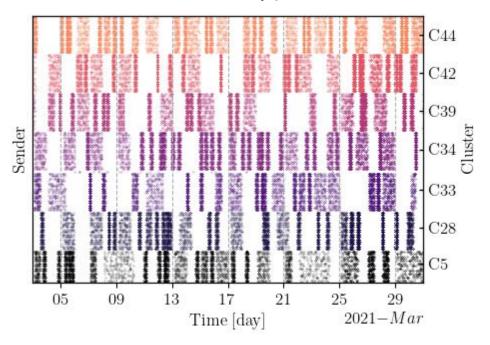
- Manual inspection of found clusters
- Main findings:
 - Sub-clusters in known scanners
 - **New scanners** from security services
 - New scanners unknown to security databases

Name/Type	Cluster	IP	Ports	Sh	Description
	C5	14	19	0.91	
	C28	16	21	0.94	
Concre	C33	17	31	0.76	Senders of the Censys ground truth class
Censys known scanner	C34	16	25	0.87	fall into different groups according to the
sub-clusters	C39	16	13	0.93	set of ports they target.
sub-clusters	C42	16	27	0.88	
	C44	16	26	0.89	
ShadowServer	C25	61	47	0.68	Senders belonging to the
known scanner	C29	36	42	0.46	ShadowServer /16 subnet and targeting
sub-clusters	C37	16	51	0.58	the same set of ports.
unknown1	C40	85	18	0.62	Same /24 subnet in Congent
NetBios scanner	C40	63	10	0.02	Communications AS.
unknown2	C30	10	12	0.89	Same /24 subnet in the Google cloud.
SMTP scanner	C30	10	12	0.69	>1 600 packets, 76% to SMTP port 25/TCP
unknown3	C13	61	5	0.33	>10 900 packets (99.5% of group traffic)
SMB scanner	CIS	01	3	0.33	is directed to port 445/TCP.
unknown4	54 % (-0.00-V-0.007-			75% of traffic to 5555/TCP. The IPs
ADB massive	C41	525	141	1.00	activity pattern is coherent with the
scanner					spreading of a known ADB worm. (Fig.15
unknown5					71% of senders has Mirai fingerprint.
Mirai-like	C18	1412	212	0.08	The most of traffic is towards typical
massive scanner					botnet ports 23/TCP and 2323/TCP (85%)
unknown6	004	(00		0.40	>400 000 packets. 88% of group traffic is
SSH brute-force	C26	623	116	0.40	directed to SSH port 22/TCP.
unknown7	004	450	110	0.00	Mostly 'Unknown'. Daily regular activity
Massive scanner	C31	158	148	0.03	pattern. Equal share on 148 ports
unknown8	0:-	00		0.00	Mostly 'Unknown'. Regular pattern.
Massive scanner	C45	22	69	0.80	Almost equal share on 69 ports

- Manual inspection of found clusters
- Main findings:
 - Sub-clusters in known scanners
 - **New scanners** from security services
 - New scanners unknown to security databases

Name/Type	Cluster	IP	Ports	Sh	Description
	C5	14	19	0.91	
	C28	16	21	0.94	
C	C33	17	31	0.76	Senders of the Censys ground truth class
Censys known scanner	C34	16	25	0.87	fall into different groups according to the
sub-clusters	C39	16	13	0.93	set of ports they target.
Sub-clusters	C42	16	27	0.88	
	C44	16	26	0.89	
ShadowServer	C25	61	47	0.68	Senders belonging to the
known scanner	C29	36	42	0.46	ShadowServer /16 subnet and targeting
sub-clusters	C37	16	51	0.58	the same set of ports.
unknown1 NetBios scanner	C40	85	18	0.62	Same /24 subnet in Congent Communications AS.
unknown2 SMTP scanner	C30	10	12	0.89	Same /24 subnet in the Google cloud. >1 600 packets, 76% to SMTP port 25/TCP.
unknown3 SMB scanner	C13	61	5	0.33	>10 900 packets (99.5% of group traffic) is directed to port 445/TCP.
unknown4 ADB massive scanner	C41	525	141	1.00	75% of traffic to 5555/TCP. The IPs activity pattern is coherent with the spreading of a known ADB worm. (Fig.15)
unknown5 Mirai-like massive scanner	C18	1412	212	0.08	71% of senders has Mirai fingerprint. The most of traffic is towards typical botnet ports 23/TCP and 2323/TCP (85%)
unknown6 SSH brute-force	C26	623	116	0.40	>400 000 packets. 88% of group traffic is directed to SSH port 22/TCP.
unknown7 Massive scanner	C31	158	148	0.03	Mostly 'Unknown'. Daily regular activity pattern. Equal share on 148 ports
unknown8 Massive scanner	C45	22	69	0.80	Mostly 'Unknown'. Regular pattern. Almost equal share on 69 ports

- Manual inspection of found clusters
- Main findings:
 - Sub-clusters in known scanners
 - **New scanners** from security services
 - New scanners unknown to security databases

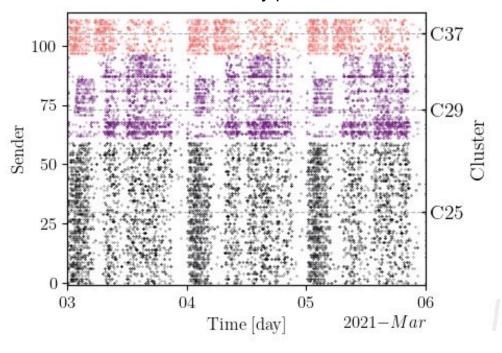

Name/Type	Cluster	IP	Ports	Sh	Description
Ţle.	C5	14	19	0.91	
	C28	16	21	0.94	
C	C33	17	31	0.76	Senders of the Censys ground truth class
Censys known scanner	C34	16	25	0.87	fall into different groups according to the
sub-clusters	C39	16	13	0.93	set of ports they target.
Sub-clusters	C42	16	27	0.88	
	C44	16	26	0.89	
ShadowServer	C25	61	47	0.68	Senders belonging to the
known scanner	C29	36	42	0.46	ShadowServer /16 subnet and targeting
sub-clusters	C37	16	51	0.58	the same set of ports.
unknown1 NetBios scanner	C40	85	18	0.62	Same /24 subnet in Congent Communications AS.
unknown2 SMTP scanner	C30	10	12	0.89	Same /24 subnet in the Google cloud. >1 600 packets, 76% to SMTP port 25/TCP.
unknown3 SMB scanner	C13	61	5	0.33	>10 900 packets (99.5% of group traffic) is directed to port 445/TCP.
unknown4 ADB massive scanner	C41	525	141	1.00	75% of traffic to 5555/TCP. The IPs activity pattern is coherent with the spreading of a known ADB worm. (Fig.15)
unknown5 Mirai-like massive scanner	C18	1412	212	0.08	71% of senders has Mirai fingerprint. The most of traffic is towards typical botnet ports 23/TCP and 2323/TCP (85%)
unknown6 SSH brute-force	C26	623	116	0.40	>400 000 packets. 88% of group traffic is directed to SSH port 22/TCP.
unknown7 Massive scanner	C31	158	148	0.03	Mostly 'Unknown'. Daily regular activity pattern. Equal share on 148 ports
unknown8 Massive scanner	C45	22	69	0.80	Mostly 'Unknown'. Regular pattern. Almost equal share on 69 ports

- Manual inspection of found clusters
- Main findings:
 - Sub-clusters in known scanners
 - **New scanners** from security services
 - New scanners unknown to security databases

Name/Type	Cluster	IP	Ports	Sh	Description
Ţŝ.	C5	14	19	0.91	
	C28	16	21	0.94	
C	C33	17	31	0.76	Senders of the Censys ground truth class
Censys	C34	16	25	0.87	fall into different groups according to the
known scanner sub-clusters	C39	16	13	0.93	set of ports they target.
sub-clusters	C42	16	27	0.88	
	C44	16	26	0.89	
ShadowServer	C25	61	47	0.68	Senders belonging to the
known scanner	C29	36	42	0.46	ShadowServer /16 subnet and targeting
sub-clusters	C37	16	51	0.58	the same set of ports.
unknown1 NetBios scanner	C40	85	18	0.62	Same /24 subnet in Congent Communications AS.
unknown2 SMTP scanner	C30	10	12	0.89	Same /24 subnet in the Google cloud. >1 600 packets, 76% to SMTP port 25/TCP
unknown3 SMB scanner	C13	61	5	0.33	>10 900 packets (99.5% of group traffic) is directed to port 445/TCP.
unknown4 ADB massive scanner	C41	525	141	1.00	75% of traffic to 5555/TCP. The IPs activity pattern is coherent with the spreading of a known ADB worm. (Fig.15
unknown5 Mirai-like massive scanner	C18	1412	212	0.08	71% of senders has Mirai fingerprint. The most of traffic is towards typical botnet ports 23/TCP and 2323/TCP (85%)
unknown6 SSH brute-force	C26	623	116	0.40	>400 000 packets. 88% of group traffic is directed to SSH port 22/TCP.
unknown7 Massive scanner	C31	158	148	0.03	Mostly 'Unknown'. Daily regular activity pattern. Equal share on 148 ports
unknown8 Massive scanner	C45	22	69	0.80	Mostly 'Unknown'. Regular pattern. Almost equal share on 69 ports

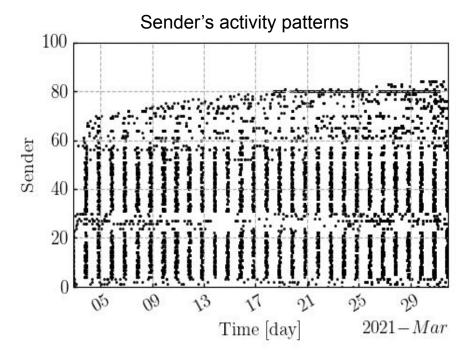
Name/Type	Cluster	IP	Ports	Sh	Description
73-	C5	14	19	0.91	
	C28	16	21	0.94	
C	C33	17	31	0.76	Senders of the Censys ground truth class
Censys known scanner	C34	16	25	0.87	fall into different groups according to the
sub-clusters	C39	16	13	0.93	set of ports they target.
sub-clusters	C42	16	27	0.88	
	C44	16	26	0.89	
ShadowServer	C25	61	47	0.68	Senders belonging to the
known scanner	C29	36	42	0.46	ShadowServer /16 subnet and targeting
sub-clusters	C37	16	51	0.58	the same set of ports.
unknown1 NetBios scanner	C40	85	18	0.62	Same /24 subnet in Congent Communications AS.
unknown2 SMTP scanner	C30	10	12	0.89	Same /24 subnet in the Google cloud. >1 600 packets, 76% to SMTP port 25/TCP.
unknown3 SMB scanner	C13	61	5	0.33	>10 900 packets (99.5% of group traffic) is directed to port 445/TCP.
unknown4 ADB massive scanner	C41	525	141	1.00	75% of traffic to 5555/TCP. The IPs activity pattern is coherent with the spreading of a known ADB worm. (Fig.15)
unknown5 Mirai-like massive scanner	C18	1412	212	0.08	71% of senders has Mirai fingerprint. The most of traffic is towards typical botnet ports 23/TCP and 2323/TCP (85%)
unknown6 SSH brute-force	C26	623	116	0.40	>400 000 packets. 88% of group traffic is directed to SSH port 22/TCP.
unknown7 Massive scanner	C31	158	148	0.03	Mostly 'Unknown'. Daily regular activity pattern. Equal share on 148 ports
unknown8 Massive scanner	C45	22	69	0.80	Mostly 'Unknown'. Regular pattern. Almost equal share on 69 ports

Sender's activity patterns



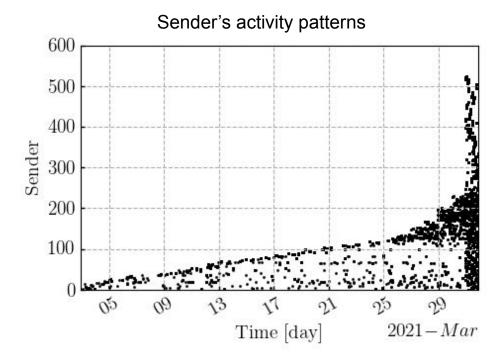
Sub-clusters in known scanners (*Censys* GT label)

Name/Type	Cluster	IP	Ports	Sh	Description
Censys known scanner sub-clusters	C5	14	19	0.91	
	C28	16	21	0.94	
	C33	17	31	0.76	Senders of the Censys ground truth class
	C34	16	25	0.87	fall into different groups according to the
	C39	16	13	0.93	set of ports they target.
	C42	16	27	0.88	
	C44	16	26	0.89	
ShadowServer	C25	61	47	0.68	Senders belonging to the
known scanner	C29	36	42	0.46	ShadowServer /16 subnet and targeting
sub-clusters	C37	16	51	0.58	the same set of ports.
unknown1 NetBios scanner	C40	85	18	0.62	Same /24 subnet in Congent Communications AS.
unknown2 SMTP scanner	C30	10	12	0.89	Same /24 subnet in the Google cloud. >1 600 packets, 76% to SMTP port 25/TCP.
unknown3 SMB scanner	C13	61	5	0.33	>10 900 packets (99.5% of group traffic) is directed to port 445/TCP.
unknown4 ADB massive scanner	C41	525	141	1.00	75% of traffic to 5555/TCP. The IPs activity pattern is coherent with the spreading of a known ADB worm. (Fig.15)
unknown5 Mirai-like massive scanner	C18	1412	212	0.08	71% of senders has Mirai fingerprint. The most of traffic is towards typical botnet ports 23/TCP and 2323/TCP (85%)
unknown6 SSH brute-force	C26	623	116	0.40	>400 000 packets. 88% of group traffic is directed to SSH port 22/TCP.
unknown7 Massive scanner	C31	158	148	0.03	Mostly 'Unknown'. Daily regular activity pattern. Equal share on 148 ports
unknown8 Massive scanner	C45	22	69	0.80	Mostly 'Unknown'. Regular pattern. Almost equal share on 69 ports


Sender's activity patterns

Sub-clusters in **new unknown** security scanners (*Shadowserver.org*)

Name/Type	Cluster	IP	Ports	Sh	Description
Censys known scanner sub-clusters	C5	14	19	0.91	
	C28	16	21	0.94	
	C33	17	31	0.76	Senders of the Censys ground truth class
	C34	16	25	0.87	fall into different groups according to the
	C39	16	13	0.93	set of ports they target.
	C42	16	27	0.88	
	C44	16	26	0.89	
ShadowServer	C25	61	47	0.68	Senders belonging to the
known scanner	C29	36	42	0.46	ShadowServer /16 subnet and targeting
sub-clusters	C37	16	51	0.58	the same set of ports.
unknown1 NetBios scanner	C40	85	18	0.62	Same /24 subnet in Congent Communications AS.
unknown2 SMTP scanner	C30	10	12	0.89	Same /24 subnet in the Google cloud. >1 600 packets, 76% to SMTP port 25/TCP.
unknown3 SMB scanner	C13	61	5	0.33	>10 900 packets (99.5% of group traffic) is directed to port 445/TCP.
unknown4 ADB massive scanner	C41	525	141	1.00	75% of traffic to 5555/TCP. The IPs activity pattern is coherent with the spreading of a known ADB worm. (Fig.15)
unknown5 Mirai-like massive scanner	C18	1412	212	0.08	71% of senders has Mirai fingerprint. The most of traffic is towards typical botnet ports 23/TCP and 2323/TCP (85%)
unknown6 SSH brute-force	C26	623	116	0.40	>400 000 packets. 88% of group traffic is directed to SSH port 22/TCP.
unknown7 Massive scanner	C31	158	148	0.03	Mostly 'Unknown'. Daily regular activity pattern. Equal share on 148 ports
unknown8 Massive scanner	C45	22	69	0.80	Mostly 'Unknown'. Regular pattern. Almost equal share on 69 ports



Unknown massive scanners

NetBIOS scan

Name/Type	Cluster	IP	Ports	Sh	Description
Censys known scanner sub-clusters	C5	14	19	0.91	
	C28	16	21	0.94	
	C33	17	31	0.76	Senders of the Censys ground truth class
	C34	16	25	0.87	fall into different groups according to the
	C39	16	13	0.93	set of ports they target.
	C42	16	27	0.88	
	C44	16	26	0.89	
ShadowServer	C25	61	47	0.68	Senders belonging to the
known scanner	C29	36	42	0.46	ShadowServer /16 subnet and targeting
sub-clusters	C37	16	51	0.58	the same set of ports.
unknown1 NetBios scanner	C40	85	18	0.62	Same /24 subnet in Congent Communications AS.
unknown2 SMTP scanner	C30	10	12	0.89	Same /24 subnet in the Google cloud. >1 600 packets, 76% to SMTP port 25/TCP.
unknown3 SMB scanner	C13	61	5	0.33	>10 900 packets (99.5% of group traffic) is directed to port 445/TCP.
unknown4 ADB massive scanner	C41	525	141	1.00	75% of traffic to 5555/TCP. The IPs activity pattern is coherent with the spreading of a known ADB worm. (Fig.15)
unknown5 Mirai-like massive scanner	C18	1412	212	0.08	71% of senders has Mirai fingerprint. The most of traffic is towards typical botnet ports 23/TCP and 2323/TCP (85%)
unknown6 SSH brute-force	C26	623	116	0.40	>400 000 packets. 88% of group traffic is directed to SSH port 22/TCP.
unknown7 Massive scanner	C31	158	148	0.03	Mostly 'Unknown'. Daily regular activity pattern. Equal share on 148 ports
unknown8 Massive scanner	C45	22	69	0.80	Mostly 'Unknown'. Regular pattern. Almost equal share on 69 ports

Unknown massive scanners ADB worm-like

Conclusions

 DarkVec exploits word embeddings to highlight similar behaviors among senders targeting darknets

 It is able to automatically clusters senders performing known activity (semi-supervised learning)

- It lets previously unknown coordinated activity to emerge (unsupervised learning)
 - Sub-clusters in known scanners
 - New scanners from security services
 - New scanners unknown to security databases
- Open source code available at https://github.com/SmartData-Polito/darkvec

Future Work

Improve DarkVec scalability

Apply to other temporal sequences (e.g., honeypots)

 Study temporal evolution of senders' embeddings and clusters structure to detect drifts and new patterns

- Understand if a transfer learning is possible
 - Use the same embedding in i) different vantage points, at ii) different time

THANK YOU FOR YOUR ATTENTION

QUESTIONS?

Luca Gioacchini
luca.gioacchini@polito.it

