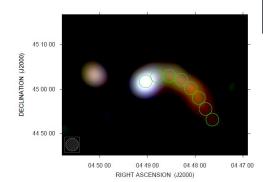
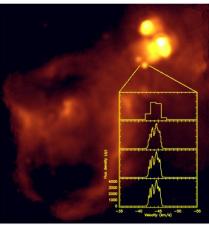
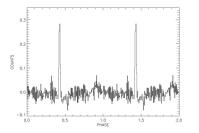
Ricerca astrofisica e ICT: Il Sardinia Radio Telescope

Sergio Poppi (Istituto Nazionale di Astrofisica) Antonietta Fara (Istituto Nazionale di Astrofisica)

Il Sardinia Radio Telescope (San Basilio - Ca)

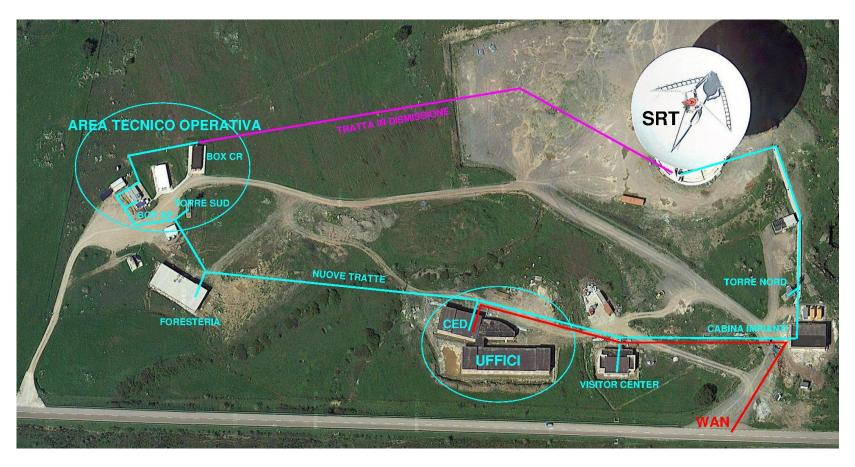





SRT in cifre

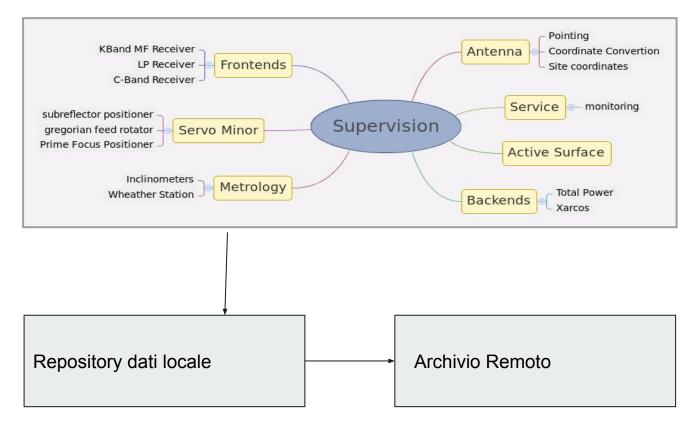
- 64 metri di diametro
- Operatività da 300 MHz a 26 GHz (progettato per operare fino a 115 GHz)
- Modalità operative:
 - Single dish
 - VLBI (Consorzio European VLBI Network, EVN)
- Applicazioni:
 - Pulsar
 - Mezzo interstellare
 - Astrochimica
 - o radio astronomia extragalattica
 - fisica solare
 - Space Weather e Tracking DSN (ASI)
 - 0

SRT è uno strumento versatile, diverse applicazioni scientifiche ciascuna con le sue esigenze.



	INFRASTRUTTURE	OPERATIVITA'	INFRASTRUTTURA ICT
2002/2011	Kickoff progrtto e costruzione SRT		
2011	COMPLETAMENTO RADIO TELESCOPIO		Rete linskat 4/8 Mbps fonia GSM
2012	Control Room e CED temporanei	Commissioning tecnico Prima luce	Fonia su linksat, sistema di controllo Antenna Link FO tra antenna e box temp
2013	30 Set INAUGURAZIONE		Backend Single Dish + VLBI Sistemi T&F - Maser
2016		14 Progetti Early Science Partecipazione VLBI	
2017	Completamento Edifici e nuovo CED	Shutdown Cassini e Follow up Onde Gravitazionali	Cablaggio definitivo campus dorsali in FO SM – MM OM3
2018		Recommissioning	27 Feb Collegamento RTR - GARR 1 Gbps 10 Apr test setup eVLBI
		15 Set Call for Proposal 17/18 Settembre 1° sessione eVLBI	Imminente: Upgrade 10 Gbps

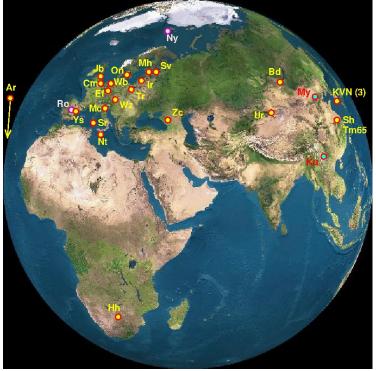
Infrastrutture



WAN in fibra ottica di 107 km, finanziato dalla Regione Autonoma Sardegna (RTR)

ICT a servizio di SRT

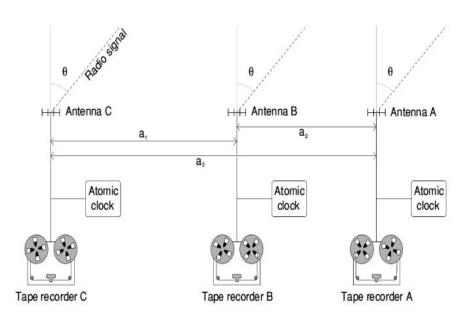
DISCOS: SRT Control Software



Modalità operative: Single Dish o VLBI

40% Single Dish 25% VLBI

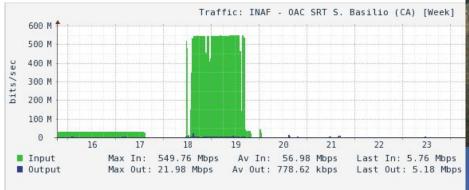
Altre operazioni: 20% ASI, manutenzioni 15%.



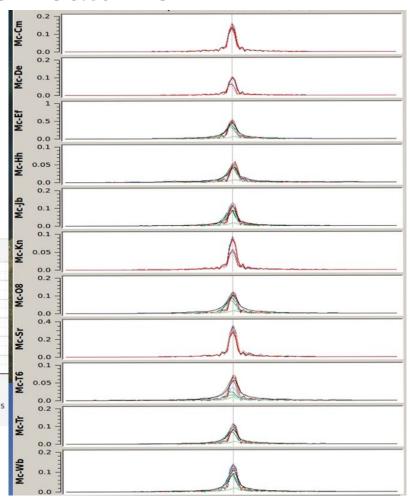
VLBI - Principio di funzionamento

Per ogni "stazione" VLBI

- Segnale viene campionato, digitalizzato e marcato temporalmente (DBBC)
- Registrazione locale
- Dati Trasferiti al correlatore (e.g JIVE-Dwingeloo NL)
 - MARK V (spedizione dischi via corriere)
 - Flexbuff (Nexpress eu): streamer via rete
- 100-200 TB per ogni sessione (15-21 gg) per ogni antenna.
- Correlazione avviene offline (dopo qualche settimana)



- datarate 1024 o 2048 Mbps
- SNR (signal-to-noise ratio) \propto sqrt(bandwidth)
- datarate [Mbit/s] = bandwidth [MHz]* * Npol
 * Nbit (1 or 2 bit sampling) * * 2.



eVLBI: Correlazione in quasi-realtime

- Segnale viene campionato, digitalizzato e marcato temporalmente (DBBC)
- Trasferito via UDP alla centrale di correlazione (JIVE - Dwingeloo, NL)
 - Correlazione on line

Esperimento eVLBI 18-19 Settember 2018. 1 Gbps, (SRT 512 Mbps)

Single Dish: Volume Dati

Backend disponibili.

- SARDARA Spettrometro FX, 16K canali.
 2GHz di banda, full-stokes, multibeam (LR7/2007 CRP-49231)
 - sampling rate fino a 100 Hz
 - o data rate fino a **100 GByte/ora**
- Pulsar Backend DFB, ROACH1) produzione dati 100 GB/ per ora: pre-riduzione per ridurre la mole di dati dall'osservatore.
- Total Power e Xarcos: 10 100 MByte /day

Sardara ADC 5 GS/s ROACH2 #1 ADC 5 GS/s ADC 5 GS/s ROACH2 #2 GPU-based GPU-based node #2 ADC 5 GS/s ROACH2 #3 GPU-based ADC 5 GS/s node #3 Switch 10G GPU-based 24 ports node #4 ADC 5 GS/s GPU-based ROACH2 #4 node #5 GPU-based node #6 GPU-based ADC 5 GS/s ROACH2 #5 node #7 ADC 5 GS/s GPU-based node #8 ADC 5 GS/s ROACH2 #6 ADC 5 GS/s Control node ADC 5 GS/s ROACH2 #7 Data for DATA STORAGE the users 96 TB Clock & 1PPS Distributor

Eterogeneità nel volume dati prodotti: funzione del backend e strategia osservativa

Single Dish: Trasferimento dati

Trasferimento dati:

- Sede Selargius: repositoriy locale e riduzione dati
- Archivi Nazionali Inaf IA2-Trieste:

IA2 Italian Center for Astronomical Archives
Centro Italiano Archivi Astronomici

Prospettive future.

- VLBI (EVN). Attualmente data rate è 1024 o 2048 Mbps. Test a 4096 Mbps in corso. In prospettiva:
 - VLBI recorded 4 Gbps (2019-2020) e 32 Gbps I (>2021?)
 - e-VLB 2 Gbps I 4 Gbps (>2021?)
- Single Dish prevede un incremento del volume di dati generati a causa dei seguenti fattori
 - o possibilità di gestire nuovi ricevitori e multi beam. Previsto Q.Band 19 Beam,
 - backend vecchia generazione in dismissione
- Infrastruttura WAN 10 Gbps può garantire operatività a medio termine
- A lungo termine:
 - o necessità di espansione.
 - Ottimizzazione risorse (Bandwidth on demand?)
- Cambio paradigma nell'analisi dati:
 - attualmente dati radioastronomici vengono replicati e ridotti nella workstation del ricercatore.
 - futuro analisi dati su cloud (SaaS)

Per maggiori informazioni....

- http://www.srt.inaf.it/
- http://www.evlbi.org/evlbi/evlbi.html
- http://bit.ly/sardara backend