Virtual Data Centers: Fueling Data Science with OpenStack

Stefano Cacciaguerra Stefano Chiappini INGV

NE.RE.I.D.E.

INGV implemented the **NEw REsearch Infrastructure Datacenter for EMSO** in the **Western Ionian Sea EMSO site**, at Portopalo di Capopassero (SR), Italy:

- → an European research infrastructure of EMSO-ERIC funded by PON InSEA
- → a ICT infrastructure for archiving, processing, and sharing scientific data from marine observatories and for developing advanced services
- → it promotes multidisciplinary scientific/technological research to understand anthropogenic phenomena in the deep marine environment

Data science supports the understanding of complex marine phenomena through advanced processing of the collected data

Stefano Cacciaguerra & Stefano Chiappini - INGV

2

What do Data Scientists want in NEREIDE?

Data Analysis: Using scalable computational resources to analyze large volumes of data

Model Development: Exploiting computing power to perform complex simulations

Data Management: Organize and manage complex datasets, using distributed storage features to ensure data integrity and security

Data Visualization: Making complex data clear with visual tools like maps and charts

Collaboration: Working with other scientists to promote interdisciplinary research

Workflow Automation: Using management tools to automate processes and running periodic analyses

Secure Remote Access: Accessing to infrastructure from anywhere, ensuring real-time research continuity

How NEREIDE supports Data Science

Virtual Data Centers based on Openstack provide a custom and adaptable virtual environment, enabling precise control over applications and data management

- → Technologies like JupyterHub, ERDDAP and ElasticSearch Cluster power data analysis and visualization
- → Openstack scalable nature allows data scientists to adjust processing and storage resources for handling large datasets or complex simulations
- → Enhanced interdisciplinary collaboration through IDEM and GARR Cloud Federation
- → Automation tools, like MaaS/JuJu, simplify data science workflows, from data analyses to results sharing

Openstack → Users, Projects and Tenants

Openstack is a free open standard cloud computing platform deployed as Infrastructure-as-a-Service where cloud resources are made available to users

Users can manage cloud resources through a web-based dashboard, command-line tools, or RESTful web services

Project is the base unit of ownership in OpenStack (all resources must be owned by a specific project). In OpenStack Identity, a project must be owned by a specific domain

Tenant is a group of users in charge of a logical grouping of cloud resources

Tenant & Virtual Data Center

In our solution, **Tenants** are in charge of cloud resources where users could install, configure and manage virtual machines behind a **Gateway** owning a public IP address realizing a own Virtual Data Center (VDC).

- → cloud admins make cloud infrastructure and real Data Center works
- → tenant users create Service in their VMs on VDC

"Admins are owners of a mall. Admins entrust a tenant with the management of a shop. Admins are in charge of managing the whole infrastructure, managers of their own shop"

Networks & Tenants

There are different types of networks:

provider → mapped directly to an existing physical network You can use flat provider networks to connect instances directly to the external network. (managed by *cloud admins*)

project → multiple private networks are fully isolated by default and are not shared with other projects. (managed by *tenant users*)

shared → networks shared among all tenants! (managed by *cloud admins*)

shared (RBAC) → Role-Based Access Control (RBAC) networks shared among specific tenants! (managed by cloud admins)

Tenants on Openstack Networking

VDCs

Optimization of Tenants

Tenant's Gateway

In order to share services on Internet, Tenant must use a Gateway owning a specific Public IP address and it must work as:

- → a Border Router
- → a Firewall
- → an OpenVPN server

The Gateway is a VM inside the **TO tenant** (cloud admins) with two interfaces:

- → one on the Provider Network
- → one on the RBAC Shared Network

A simple linux VM or something customed like Endian Firewall, IPFire or OpenWrt

Endian Firewall as Gateway

It is an open-source router, firewall and gateway security Linux distribution

Credentials of Endian Firewall:

- \rightarrow root of SO \rightarrow Cloud Admins
- → admin of Web Dashboard → Cloud Admins
- → admin user of Web Dashboard → Tenant users

Endian Firewall Services

Port Forwarding / DNAT

to make accessible services from Internet

Masquerading / SNAT

to allow VMs to access Internet

OpenVPN

to allow users to access VMs (ssh,https,etc)

Jupyter Ecosystem

JupyterHub (JH) is an open-source web application that allows multiple users to interact with Jupyter Notebooks (JN) on a shared server

With JH, users can log in to a central server using their own credentials and access their own JNs, which are hosted on this server

JNs are **interactive documents** containing executable code (like **Python**, **R**, **Julia**), visualization and text editing capabilities, it is a useful tool for **data science**

JNs can be used for data cleaning and transformation, numerical simulation, statistical modeling, machine learning, ...

Jupyter As a Service of VDC

In order to implement JupyterHub as a service, it is necessary:

- 1. create your VM via Horizon
- 2. connect the openVPN server (the Tenant's Gateway)
- 3. ssh with key pair to your VM
- 4. install the Littlest JupyterHub (TLJH)

TLJH places 2 systemd units on your VM

- → jupyterhub.service starts the JupyterHub service
- → traefik.service starts proxy HTTPS

Dashboard of Jupyter

What is the main result?

From "Tenant Users" side → Data Scientist

⇒ lets tenant users operate complex infrastructure (ready-to-use) without the task of setting up and managing a Real Data Center

From "Cloud Admins" side → Data Engineer

- ⇒ Centralizing e Optimizing the resources
- ⇒ Virtualizing all the resources
- ⇒ Rationalizing the infrastructure investments

Jupyter Slurm Spawner from Cloud to HPC

VDC Migration

Is it possible to Migrate a VDC from a source cloud openstack to a target one?

Acknowledgement

We would like to express our gratitude for their collaboration to:

- **⇒ Alex Barchiesi**
- **⇒ Alberto Colla**
- **⇒ Claudio Pisa**

and we would like to mention:

NereideBO tenant created in Bologna on Cloud SUPER (POR-FESR - Supercomputing Unified Platform - Emilia-Romagna) is used for part of the development and experiments on VDC

Virtual Data Centers: Fueling Data Science with OpenStack

Stefano Cacciaguerra Stefano Chiappini INGV

2318 9129